Hardware Trojans Detection Methods
Julien FRANCQ

2013, December the 12th
Outline

The HINT Project

Introduction to Hardware Trojans

Hardware Trojan Taxonomy

HT Detection Methods

Design for Hardware Trust
Introduction to Hardware Trojans

Hardware Trojan Taxonomy

HT Detection Methods

Design for Hardware Trust

Conclusion
HINT Project Profile

- HINT = Holistic Approaches for Integrity of ICT-Systems
- Project Number: 317930
- Project website: www.hint-project.eu
- Project start: October 1, 2012
- Project duration: 3 years
- Total Costs: €5.103.893
- EC- Contribution: €3.350.000
- Project is co-financed by the European Commission under Seventh Framework Programme
Missions

- Development of a common framework for system integrity checking
- Use developed technologies on real-time applications
- Prepare adoption by future security evaluation schemes
Motivation

- **Authenticity and integrity of hardware components in modern ICT systems**

- **Security challenged by improving attacks**

 Recent trends:

 - Counterfeiting of hardware components
 - “Hardware Trojans”: Hidden functions in Integrated Circuits

- **HINT proposal:**

 Novel technologies to support assurance of genuineness and integrity
Technical Approach

- Holistic Integrity Checking for Components in ICT-Systems
Objectives

- Main objective: **Improve security** of architectures and platforms based on tamper-resistant integrated circuits

- Development of methods to:
 - Perform **at-time-of-use integrated checking** of the global integrity of a system for hardware and embedded software
 - Check the "**genuineness**" of the secure integrated circuits by detecting functional clones or counterfeited circuits
 - Detect the presence of **Hardware Trojans**

- Main technologies used:
 - **Physically Unclonable Functions**, enabling to authenticate a hardware component using a physical, intrinsic and unique property of the device
 - **Side Channel based analysis** to monitor the behaviour of hardware components and to detect changes from their original specifications and implementations
Section

The HINT Project

Introduction to Hardware Trojans
Definition
Where introducing HTs?
Initiatives
(Possibly) Desastrous Effects

Hardware Trojan Taxonomy

HT Detection Methods

Design for Hardware Trust
Hardware Trojan (HT)

- **Malicious** modifications of an Integrated Circuit (IC) during its design flow

Definition

Hardware Trojan (HT)

Malicious modifications of an Integrated Circuit (IC) during its design flow.

- **FAKE Counterfeiting** has become a big problem for the U.S. military, and bogus packaging could disguise a questionable chip as a legitimate one.
- **BAKE**
 - Baking a chip for 24 hours after fabrication could shorten its life span from 15 years to a scant 6 months.

ADD EXTRA TRANSISTORS

Adding just 1000 extra transistors during either the design or the fabrication process could create a kill switch or a trapdoor. Extra transistors could enable access for a hidden code that shuts off all or part of the chip.

NICK THE WIRE

A notch in a few interconnects would be almost impossible to detect but would cause eventual mechanical failure as the wire became overloaded.

ADD OR RECONNECT WIRING

During the layout process, new circuit traces and wiring can be added to the circuit. A skilled engineer familiar with the chip’s blueprints could reconnect the wires that connect transistors, adding gates and hooking them up using a process called circuit editing.
Context

- **Outsourcing** of the fabrication of the ICs
- Difficult to ensure the **trust** in all the steps of the design flow
HTs in Practice

- **2005**: US Department of Defense
- **2007**: DARPA “Trust in IC Program”
- **2009**: “Hot Topic” of CHES conference
- **After 2009**: other conferences (DATE, HOST, CARDIS, ReConFig, etc.)
- [Skorobogatov et al.: “Breakthrough Silicon Scanning Discovers Backdoor in Military Chip”, CHES 2012]
- [Becker et al.: “Stealthy Dopant-Level Hardware Trojans”, CHES 2013]
- 2 research projects: HINT (European funded) and HOMERE (French funded)
- ⇒ HTs: real and emerging threat
Possible Payloads

- Kill switch
 - Fighters

- Dysfonsctional circuit
 - Satellite which works only 6 months

- Secret information leakage
 - Ciphered communications

- Help a malware by providing a backdoor
 - Privilege escalation, automatic login, password theft

- Prevent from going to sleep mode
 - Autonomy

- etc.
Hardware Trojan Taxonomy

- **Taxonomy**: tree where each branch defines a different property
- In the ideal case, a specific HT must be on only one leaf of the tree

Benefits of the taxonomy

- Systematic study of their characteristics
- Specific detection methods for each HT class
- Benchmark circuits for each class

- Best existing taxonomy: Trust-Hub
Trust-Hub Taxonomy

- **Insertion Phase**
 - Specification
 - Design
 - Fabrication
 - Testing
 - Assembly and Package

- **Abstraction Level**
 - System
 - Development Environment
 - Register Transfer
 - Gate
 - Layout
 - Physical

- **Activation Mechanism**
 - Always On
 - Triggered
 - Internally
 - Time Based
 - Physical Condition Based
 - Externally
 - User Input
 - Component Output

- **Effect**
 - Change Functionality
 - Degrade Performance
 - Leak Information
 - Denial of Service

- **Location**
 - Processor
 - Memory
 - I/O
 - Power Supply
 - Clock Grid

- **Physical Characteristic**
 - Distribution
 - Size
 - Type
 - Parametric
 - Functional
 - Structure
 - Layout Same
 - Layout Change
Factoring the Taxonomy

- 4 (effects) × 5 (locations) × 5 (insertion phases) × 6 (abstraction levels) × 5 (activation mechanisms) = 3000 different HTs!
- Very rich taxonomy!
- Impossible to implement them all, and then detect them
- ⇒ Factoring this taxonomy
- Total: ~ 100 HTs
Section

The HINT Project

Introduction to Hardware Trojans

Hardware Trojan Taxonomy

HT Detection Methods
 Overview
 Logic Testing: Challenges & Solutions
 Side-Channels: Challenges & Solutions
 Some Subtleties
 Summary

Design for Hardware Trust
The HINT Project
Presentation

Introduction to Hardware Trojans
Definition
Where introducing HTs?
Initiatives
(Possibly) Desastrous Effects

Hardware Trojan Taxonomy

HT Detection Methods
Overview
Logic Testing: Challenges & Solutions
Side-Channels: Challenges & Solutions
Some Subtleties
Summary

Design for Hardware Trust
No method is 100% successful!
Detect HTs? Not so easy...

1. **Systems on Chip** are more and more complex, and detecting a small malicious modification is difficult.
2. Reverse-engineering inspection is costly and difficult.
 - No guarantee that the remaining ICs are HT-free.
3. By nature, HTs are designed to be **stealthy**.
 - Not easily detectable with conventional logic testing.
4. By nature, HTs are **small** to be not easily detected by optical analysis.
 - Difficult to detect them with **side-channel** (power consumption, electromagnetic radiations, etc.) analysis.
The HINT Project
Presentation

Introduction to Hardware Trojans
Definition
Where introducing HTs?
Initiatives
(Possibly) Desastrous Effects

Hardware Trojan Taxonomy

HT Detection Methods
Overview
Logic Testing: Challenges & Solutions
Side-Channels: Challenges & Solutions
Some Subtleties
Summary

Design for Hardware Trust
Test Generation (1/2)

- Conventional logic testing cannot be used to reliably detect HT
- Manufacturing defects (stuck-at-faults) \(\neq \) HT effects
- Difficult to trigger a HT
 - Time-bombs
- Some HTs have no impact on functional outputs (Trojan Side-Channels)
- Vast spectrum of possible HTs
HTs are on low controllability and observability nodes for a rare triggering

Extremely challenging to exhaustively generate test vectors for triggering a HT
Deterministic vs. Probabilistic Approach

- **Deterministic approach** difficult
 - Many possible HTs
 - Function of some IC nodes
 - ⇒ Exhaustive enumeration impossible

- **Statistic approach**:
 1. Find rare events in the circuit
 2. Get a list of HTs which can be inserted
 3. Generate test vectors and estimate their coverage
 4. ⇒ Set of high quality test vectors

- 85% reduction in testset length compared to a random approach, but less efficient with big triggers and takes a long time
The HINT Project

Presentation

Introduction to Hardware Trojans

Definition

Where introducing HTs?

Initiatives

(Possibly) Desastrous Effects

Hardware Trojan Taxonomy

HT Detection Methods

Overview

Logic Testing: Challenges & Solutions

Side-Channels: Challenges & Solutions

Some Subtleties

Summary

Design for Hardware Trust
Side-Channel Analysis

- Any HT in the IC should modify its leakage current (IDDQ), dynamic power trace (IDDT), path-delay characteristic, ElectroMagnetic (EM) radiation.
- Don’t need to trigger a HT for measuring its effects
- Test vectors generation easier than for logic testing
- Needs HT-free circuits
 - Get side-channel measurements and then reverse-engineering to check if the IC is HT-free
- If so, the measurements become a reference, and we can then compare the side-channels of the other circuits
Global Side-Channel Analysis

- Green: RSA signal
- Red: Process noise (offset)
- Black: HT signal (offset)
Local Side-Channel Analysis

- Local Side-Channel Analysis more efficient than global ones
- Needs again HT-free circuits

- Maximize/Minimize the activity of some IC areas
Noise and Sensitivity
The HINT Project
Presentation

Introduction to Hardware Trojans
Definition
Where introducing HTs?
Initiatives
(Possibly) Desastrous Effects

Hardware Trojan Taxonomy

HT Detection Methods
Overview
Logic Testing: Challenges & Solutions
Side-Channels: Challenges & Solutions
Some Subtleties
Summary

Design for Hardware Trust
Some Subtleties

- Added circuitry for the HT detection must not be infected itself
 - At best, the added circuitry is disabled (e.g., fault countermeasure)
 - At worst, it can be turned into a backdoor (e.g., scan chain)
- A HT triggering logic can exploit the “Test/Scan Enable” control line to disable itself
- Parametric HTs very difficult to detect
Summary

- Complementary methods
- Combine test-time and run-time methods
- Modify the IC for assistive and preventive methods
 - ⇒ Design for Hardware Trust
The HINT Project

Introduction to Hardware Trojans

Hardware Trojan Taxonomy

HT Detection Methods

Design for Hardware Trust

Conclusion
Introduction

- To improve HT detection rate, modify the IC
- Design for Hardware Trust
 - Prevent from the insertion of HT
 - Ease side-channel analysis and logic testing
- 4 main methods:
 - Delay-Based Methods
 - Rare Event Removal
 - Design for Trojan Test
 - Proof-Carrying Hardware
- Run-Time Detection Methods
Run-Time Methods

- Last line of defense
- On-line monitoring of the IC in real-time, for checks:
 - Critical operations,
 - Idle mode,
 - Security policies,
 - Performance or availability of some units,
 - etc.
- Costly
Run-Time Methods

- Disable one suspect block or force one operation
- **SPN**: Signal Probe Network
- **SM**: Security Monitor (∼ FSM)
- **SECOPRO**: Security and Control Processor
- Configurations ciphered and stored in secured Flash memory
- Overhead?
Conclusion

- Hardware Trojans are real threats for integrated circuits
- HT taxonomy is very rich
- No HT detection method of the state-of-the-art is 100% successful
- 3 lines of defense:
 - Design for Hardware Trust
 - Test-Time Methods
 - Run-Time Methods
- A European initiative: HINT project
 - Let’s talk in front of HINT Poster!
- A French initiative: HOMERE project
 - Let’s attend to the Franck Courbon presentation!
- Very encouraging first results:
 - Infected benchmark circuits will be available soon
 - A common platform for side-channel analysis
 - A “low-cost” way to extract internal delays of ICs by clock glitching
Thanks! Questions?