
Icarus Wallet Security Audit
Final Report, 2018-10-17
FOR PUBLIC RELEASE

Contents

1 Summary 3
2 Findings 4

2.1 IC-CRY-F-001: Missing sanity checks in Ed25519 API 4
2.2 IC-CRY-F-002: Unsafe ReadBuffer methods implementation 5
2.3 IC-CAR-F-003: Panic upon deserialization of malformed blocks 6
2.4 IC-CJW-F-005: Potential out-of-bound read 7
2.5 IC-CJW-F-007: Lack of parameter validation in signing and verify functions 9

3 Observations 12
3.1 IC-CRY-O-001: Zeroization of memory holding sensitive data 12
3.2 IC-CAR-O-002: Potentially unsafe unwrap() calls 12
3.3 IC-CAR-O-003: Wallet seed derivation method does not checkmnemonic length . 13
3.4 IC-CAR-O-004: Lack of unit tests of BIP44 logic 13
3.5 IC-CAR-O-005: Clippy warnings . 14
3.6 IC-CAR-O-006: No explicit handling of failed decryption 14
3.7 IC-CAR-O-007: Potential risk of integer overflow 15
3.8 IC-WFE-O-008: No certificate/key pinning 16
3.9 IC-WFE-O-009: Dependencies . 16

1

Icarus Security Audit IOHK

3.10 IC-WBE-O-010: API input validation . 17
3.11 IC-CJW-O-011: Paper wallet incorrect documentation 18

4 About 19

FOR PUBLIC RELEASE Page 2 of 19

1 Summary
IOHK hired Kudelski Security to perform a security assessment of the “Icarus”
Cardano wallet, providing access to source code, documentation, and review
guidelines including references to the most critical components. The repositories
concerned are https://github.com/input-output-hk/rust-cardano/ and
https://github.com/input-output-hk/js-cardano-wasm as well as private git
repositories including the front-end and backend-end code.
This document reports the security issues identified and our mitigation
recommendations, as well as our general assessment of the wallet implementation
and architecture. A “Status” section reports the feedback from IOHK developers, and
includes a reference to the patches related to the issues reported. One issue present
in the initial report was removed from the final report, after developers noticed that
we had misunderstood the expected functionality.
This first version of the report includes:

• 3 security issues of low severity
• 11 observations related to general code safety

Other issues discovered during the engagement are omitted from the present report
because we found out that they affect other applications than IOHK’s Icarus wallet.
These issues will be described in a future version of the report.
The audit was lead by Dr. Jean-Philippe Aumasson, VP Technology, jointly with Yolan
Romailler, Cryptography Engineer, and involved 6 person-days of work.

3

https://github.com/input-output-hk/rust-cardano/
https://github.com/input-output-hk/js-cardano-wasm

2 Findings
This section reports security issues found during the audit.
The “Status” section includes feedback from the developers received after delivering
our draft report.
Findings are codenamed IC-XXX-F-NNN with IC for Icarus, where
• XXX can be CRY (Cryptoxide), CAR (Cardano), CJW (Cardano JS wasm), WFE (wallet
front-end), WBE (wallet back-end).
• NNN is a counter in 001, 002, etc.

2.1 IC-CRY-F-001: Missing sanity checks in Ed25519 API
Severity: Low

Description
In ed25519.rs, ed25519’s signature() does not validate secret_key’s length (64
bytes), hence the program will panic if a shorter value is received.
sign_extended() has a similar issue.
Likewise, verify() should validate public_key’s length (32 bytes), otherwise the
program will panic from Fe::from_bytes(), and exchange() should verify both keys’
lengths.

4

Icarus Security Audit IOHK

Recommendation
Add assert_eq!() statements to ensure that the received keys have the right size.

Status
Addressed in https://github.com/input-output-hk/rust-cardano/issues/189.

2.2 IC-CRY-F-002: Unsafe ReadBuffer methods implementation
Severity: Low

Description
In buffer.rs, some of the ReadBuffer trait methods’ implementations could
potentially create an integer underflow or overflow:

1 fn position(&self) -> usize { self.capacity() - self.remaining() }
2

3 (...)
4

5 fn rewind(&mut self, distance: usize) {
6 self.pos -= distance;
7 self.parent.len -= distance;
8 }
9

10 (...)
11

12 fn take_next<>(&mut self, count: usize) -> &mut [u8] {
13 let r = &mut self.parent.buff[self.pos..self.pos + count];
14 self.pos += count;
15 self.parent.len += count;
16 r
17 }

FOR PUBLIC RELEASE Page 5 of 19

https://github.com/input-output-hk/rust-cardano/issues/189

Icarus Security Audit IOHK

If triggered by the caller, these will result in a panic in debug mode (though not in
release mode).
Callers of these functions in Cardano don’t seem to create any risk.

Recommendation
Verify that the arguments are of sizes that won’t underflow/overflow the arithmetic
operations.

Status
Addressed in https://github.com/input-output-hk/rust-cardano/issues/190.

2.3 IC-CAR-F-003: Panic upon deserialization of malformed blocks
Severity: Medium

Description
In RawBlock::to_header() method unwraps a Result from the decode() method,
which gets this result from deserialize() as implemented for Block values:

1 impl RawBlock {
2 pub fn from_dat(dat: Vec<u8>) -> Self { RawBlock(dat) }
3 pub fn decode(&self) -> cbor_event::Result<Block> {

RawCbor::from(&self.0).deserialize() }↪→

4 pub fn to_header(&self) -> RawBlockHeader {
5

// TODO optimise if possible with the CBOR structure by skipping some prefix and some suffix ...↪→

6 let blk = self.decode().unwrap();
7 blk.get_header().to_raw()
8 }
9 }

FOR PUBLIC RELEASE Page 6 of 19

https://github.com/input-output-hk/rust-cardano/issues/190

Icarus Security Audit IOHK

However, deserialize() can return an Err value, for example if the second byte of the
block is not 0 or 1. The program will then panic when calling unwrap(), which expects
an Ok value.

Recommendation
The potential error should be handled, for example using a math or unwrap_or_else().

Status
Addressed in https://github.com/input-output-hk/rust-cardano/issues/191.

2.4 IC-CJW-F-005: Potential out-of-bound read
Severity: Low

Description
fromSeed() takes a seed and gets wallet data from it:

1 export const fromSeed = (module, seed) => {
2 const bufseed = newArray(module, seed);
3 const bufxprv = newArray0(module, 96);
4 module.wallet_from_seed(bufseed, bufxprv);
5 let result = copyArray(module, bufxprv, 96);
6 module.dealloc(bufseed);
7 module.dealloc(bufxprv);
8 return result;
9 };

FOR PUBLIC RELEASE Page 7 of 19

https://github.com/input-output-hk/rust-cardano/issues/191

Icarus Security Audit IOHK

Here wallet_from_seed() calls the unsafe read_seed(), which reads SEED_SIZE=64
bytes from the seed’s address:

1 unsafe fn read_seed(seed_ptr: *const c_uchar) -> hdwallet::Seed {
2 let seed_slice = std::slice::from_raw_parts(seed_ptr, hdwallet::SEED_SIZE);
3 hdwallet::Seed::from_slice(seed_slice).unwrap()
4 }
5

6 ..
7

8 #[no_mangle]
9 pub extern "C" fn wallet_from_seed(seed_ptr: *const c_uchar, out: *mut c_uchar) {

10 let seed = unsafe { read_seed(seed_ptr) };
11 let xprv = hdwallet::XPrv::generate_from_seed(&seed);
12 unsafe { write_xprv(&xprv, out) }
13 }

Therefore, if the seed passed to fromSeed() is less than 64 bytes, the programwill read
out of the argument’s bounds.
This seems difficult to exploit to leak memory from the wallet application, however:
fromSeed() is called in the wallet client’s getCryptoWalletFromSeed, where the seed
is obtained from decrypting an encrypted seed:

1 export function getCryptoWalletFromSeed(
2 walletSeed: WalletSeed,
3 password: string
4): CryptoWallet {
5 const seed = decryptWithPassword(password, walletSeed.encryptedSeed);
6 const seedAsArray = Object.values(seed);
7 const wallet = Wallet.fromSeed(seedAsArray).result;
8 wallet.config.protocol_magic = protocolMagic;
9 return wallet;

10 }

Since the encrypted seed is not authenticated, an attacker could truncate the
encrypted data in order to force the usage of a shorter seed. Indeed, the

FOR PUBLIC RELEASE Page 8 of 19

Icarus Security Audit IOHK

encryptedSeed is stored in the browser’s localStorage, and may therefore be
manipulated by attackers.
Similar out-of-bound reads may happen when calling sign() and verify(), which call
unsafe Rust code under unchecked length assumptions, in respectively
wallet_tx_sign() and wallet_tx_verify().

Recommendation
Validate the size of the seed in fromSeed() at least, and preferably in
decryptWithPassword() as well.
Do similar validations to eliminate the risk in sign() and verify(), and check for
similar unchecked length in other exposed functions.

Status
Addressed in https://github.com/input-output-hk/js-cardano-wasm/issues/25.

2.5 IC-CJW-F-007: Lack of parameter validation in signing and
verify functions

Severity: Informational

Description
The following wasmwrapper functions call the signing and verification logic given their
arguments and configuration, but do not explicitly validate the parameters’ validity,
and will for example panic if an unwrap() fails:

FOR PUBLIC RELEASE Page 9 of 19

https://github.com/input-output-hk/js-cardano-wasm/issues/25

Icarus Security Audit IOHK

1 #[no_mangle]
2 pub extern "C" fn wallet_tx_sign(cfg_ptr: *const c_uchar, cfg_size: usize,

xprv_ptr: *const c_uchar, tx_ptr: *const c_uchar, tx_sz: usize, out: *mut
c_uchar) {

↪→

↪→

3 let cfg_bytes : Vec<u8> = unsafe { read_data(cfg_ptr, cfg_size) };
4 let cfg_str = String::from_utf8(cfg_bytes).unwrap();
5 let cfg : Config = serde_json::from_str(cfg_str.as_str()).unwrap();
6 let xprv = unsafe { read_xprv(xprv_ptr) };
7 let tx_bytes = unsafe { read_data(tx_ptr, tx_sz) };
8

9 let tx : tx::Tx =
raw_cbor::de::RawCbor::from(&tx_bytes).deserialize().unwrap();↪→

10

11 let txinwitness = tx::TxInWitness::new(&cfg, &xprv, &tx.id());
12

13 let signature = match txinwitness {
14 tx::TxInWitness::PkWitness(_, sig) => sig,
15 _ => unimplemented!()

// this should never happen as we are signing for the tx anyway↪→

16 };
17 unsafe { write_signature(&signature, out) }
18 }
19

20 #[no_mangle]
21 pub extern "C" fn wallet_tx_verify(cfg_ptr: *const c_uchar, cfg_size: usize,

xpub_ptr: *const c_uchar, tx_ptr: *const c_uchar, tx_sz: usize, sig_ptr: *const
c_uchar) -> i32 {

↪→

↪→

22 let cfg_bytes : Vec<u8> = unsafe { read_data(cfg_ptr, cfg_size) };
23 let cfg_str = String::from_utf8(cfg_bytes).unwrap();
24 let cfg : Config = serde_json::from_str(cfg_str.as_str()).unwrap();
25 let xpub = unsafe { read_xpub(xpub_ptr) };
26 let signature = unsafe { read_signature(sig_ptr) };
27

28 let tx_bytes = unsafe { read_data(tx_ptr, tx_sz) };
29 let tx : tx::Tx =

raw_cbor::de::RawCbor::from(&tx_bytes).deserialize().unwrap();↪→

30

31 let txinwitness = tx::TxInWitness::PkWitness(xpub, signature);
32

33 if txinwitness.verify_tx(&cfg, &tx) { 0 } else { -1 }
34 }

These are called in the wallet’s Tx.js’s sign() and verify() functions.
FOR PUBLIC RELEASE Page 10 of 19

Icarus Security Audit IOHK

Recommendation
Explicit input validation checks should be added, and the function should return an
appropriate error code upon failure.

Status
Icarus is not concerned by this as this function is not being used at all by Icarus front
end. They instead use the Wallet.js’s spend() function, which does provide check
and report error via JSON output.
(Severity was downgraded from Medium to Informational after this feedback.)

FOR PUBLIC RELEASE Page 11 of 19

3 Observations
This section reports various observations that are not security issues to be fixed.
Observations are codenamed IC-XXX-O-NNN with IC for Icarus, where
• XXX can be CRY (Cryptoxide), CAR (Cardano), CJW (Cardano JS wasm), WFE (wallet
front-end), WBE (wallet back-end).
• NNN is a counter in 001, 002, etc.

3.1 IC-CRY-O-001: Zeroization of memory holding sensitive data
For extra safety, the crypto library could erase sensitive data (such as secret keys) from
heap or stack memory after being used.

Status
Addressed in https://github.com/input-output-hk/rust-cardano/issues/192.

3.2 IC-CAR-O-002: Potentially unsafe unwrap() calls
The code includes many unwrap() calls to extract a valid result from a Result, but will
panic upon an Err value.
IC-CAR-F-003 is an example of security issue whose root cause is an unwrap().

12

https://github.com/input-output-hk/rust-cardano/issues/192

Icarus Security Audit IOHK

Status
Addressed in https://github.com/input-output-hk/rust-cardano/issues/193.

3.3 IC-CAR-O-003: Wallet seed derivation method does not check
mnemonic length

Wallet:from_bip39_mnemonics() does not check the number of words nor the
validity of the words in mnemonic_phrase. The methods called in this function do not
perform any check either. However this function does not seem to be used in the
current version of the wallet.

Status
Mnemonic length is actually checked, MnemonicString can only be constructed with a
valid mnemonic phrase of valid length. If the length is not valid, the type cannot be
constructed.

3.4 IC-CAR-O-004: Lack of unit tests of BIP44 logic
Neither bip/bip44.rs nor wallet/bip44.rs include unit tests, which seem necessary
unless done elsewhere.

Status
Addressed in https://github.com/input-output-hk/rust-cardano/issues/194.

FOR PUBLIC RELEASE Page 13 of 19

https://github.com/input-output-hk/rust-cardano/issues/193
https://github.com/input-output-hk/rust-cardano/issues/194

Icarus Security Audit IOHK

3.5 IC-CAR-O-005: Clippy warnings
The Clippy linter reports tons of possible improvements, none of which seems related
to a security issue.

Status
Clippy warnings and compilation warnings will be addressed over time.

3.6 IC-CAR-O-006: No explicit handling of failed decryption
In Input::get_derivation_path(), HDKey::decrypt_path() is called:

1 pub fn get_derivation_path(&self, key: &hdpayload::HDKey) -> Option<hdpayload::Path> {
2 match &self.value.address.attributes.derivation_path {
3 &Some(ref payload) => { key.decrypt_path(payload) },
4 &None => { None }
5 }
6 }

However decrypt_path() will return None if decryption failed, in particular if the
authentication tag is not validated:

1 pub fn decrypt_path(&self, payload: &HDAddressPayload) -> Option<Path> {
2 let out = self.decrypt(payload.as_ref())?;
3 Path::from_cbor(&out).ok()
4 }

That is, derivation_path() returns None both when
&self.value.address.attributes.derivation_path is None and when decryption
failed.

FOR PUBLIC RELEASE Page 14 of 19

Icarus Security Audit IOHK

We suggest to return a Result rather than an Option and return the relevant error in
case of a failure.

Status
Addressed in https://github.com/input-output-hk/rust-cardano/issues/195.

3.7 IC-CAR-O-007: Potential risk of integer overflow
In

1 pub fn sum_coins(coins: &[Coin]) -> Result<Coin> {
2 coins.iter().fold(Coin::new(0), |acc, ref c| acc.and_then(|v| v + *c))
3 }

The sum could overflow the u64 type in extrme cases, for example if summing
hundreds of coins whose value is close to MAX_COIN, which is unlikely to happen. This
edge case may be covered nonetheless and the overflow prevented.
Likewise, when Coin values are added, the result is not checked to be below MAX_COIN.

Status
There is a check on the Add trait implementation of the coin. This is why the acc in the
fold is used with acc.and_then, which unwraps the result and checks that it is
Result::Ok before applying the lambda function (which perform an addition and
returns a Result).

• Coin::new() performs a check and returns a Result<Coin>
• Add::<Coin>::add() performs the check that two given coins can add up and
will be checked with reusing the Coin::new(lhs.0 + rhs.0)

FOR PUBLIC RELEASE Page 15 of 19

https://github.com/input-output-hk/rust-cardano/issues/195

Icarus Security Audit IOHK

• Coin::MAX_COIN is 45000000000000000. Coin::MAX_COIN * 2 < u64::MAX

• All the inputs of the sum() function are already valid Coin and are below the
Coin::MAX_COIN.

3.8 IC-WFE-O-008: No certificate/key pinning
Requests to backendUrl via axios will presumably be done to an HTTPS host for
production (cf. the placeholder "backendUrl": "https://DEFINE:443" in
production.json). However no certificate pinning is enforced to ensure that the
client talks to the right host, and the client will rely on the browser’s certificate store.
This is not really a security issue, but could be an extra layer of defense if doable.

3.9 IC-WFE-O-009: Dependencies
When attempting to build the project, npm reports that some dependencies include
vulnerable ones:

added 599 packages from 621 contributors and audited 6374 packages in 20s

found 40 vulnerabilities (6 low, 30 moderate, 4 high)

run ‘npm audit fix‘ to fix them, or ‘npm audit‘ for details

(These vulnerabilities do not necessarily apply to the project, however, as it may not
use the vulnerable components from these libraries, ormay not expose an exploitation
vector.)
Furthermore, npm dview reports that a number of dependencies are not up-to-date:

Module Name Requested Remote

autoprefixer 7.2.5 9.1.0

bignumber.js 4.0.0 7.2.1

bluebird 3.3.4 3.5.1

FOR PUBLIC RELEASE Page 16 of 19

Icarus Security Audit IOHK

cbor 4.0.0 4.1.1

classnames 2.1.3 2.2.6

humanize-duration 3.12.0 3.15.1

mobx 3.1.7 5.0.3

mobx-react 4.1.5 5.2.3

mobx-react-form 1.32.2 1.35.1

mobx-react-router 3.1.2 4.0.4

moment 2.21.0 2.22.2

prop-types 15.6.1 15.6.2

react 15.4.2 16.4.2

react-copy-to-clipboard 4.2.3 5.0.1

react-dock 0.2.3 0.2.4

react-dom 15.4.2 16.4.2

react-intl 2.2.3 2.4.0

react-markdown 2.5.0 3.4.1

react-number-format ^3.3.0 3.5.1

react-polymorph 0.6.5 0.7.1

react-router 3.0.3 4.3.1

react-svg-inline ^2.1.0 2.1.1

safe-buffer 5.1.1 5.1.2

validator 6.3.0 10.5.0

3.10 IC-WBE-O-010: API input validation
Address and transaction validation, as done by validateAddresReq() and
validateSignedTransactionReq(), do not make a proper validation of their inputs,
as marked as TODO in the code.
We suggest that address validation be done using regexes (unless a simpler complete
check is possible).
We suggest to verify that a transaction, i.e. each (sub)field of it, may be checked for
syntactic correctness and limit values (for example, a number’s range). The signature
may or may not be verified at this point: if it is, it allows to process invalid requests
faster by avoiding a network round-trip; if the verification is not done, it saves in theory

FOR PUBLIC RELEASE Page 17 of 19

Icarus Security Audit IOHK

the time of one signature verification for valid transactions. But this saving will be
negligible, given the speed of the signature verification algorithm.

3.11 IC-CJW-O-011: Paper wallet incorrect documentation
The comment “* @param iv: Uint8Array - 4 random bytes of entropy” defines
the iv parameter of paper wallet’s scrambleStrings(), but the underlying functions
actually need an IV of 8 bytes (IV_SIZE), as enforced in scramble().
The comment should be fixed accordingly.

FOR PUBLIC RELEASE Page 18 of 19

4 About
Kudelski Security is an innovative, independent Swiss provider of tailored cyber and
media security solutions to enterprises and public sector institutions. Our team of
security experts delivers end-to-end consulting, technology, managed services, and
threat intelligence to help organizations build and run successful security programs.
Our global reach and cyber solutions focus is reinforced by key international
partnerships.
Kudelski Security is a division of Kudelski Group. For more information, please visit
https://www.kudelskisecurity.com.

Kudelski Security
route de Genève, 22-24
1033 Cheseaux-sur-Lausanne
Switzerland

This report and all its content is copyright (c) Nagravision SA 2018, all rights reserved.

19

https://www.kudelskisecurity.com

	Summary
	Findings
	IC-CRY-F-001: Missing sanity checks in Ed25519 API
	IC-CRY-F-002: Unsafe ReadBuffer methods implementation
	IC-CAR-F-003: Panic upon deserialization of malformed blocks
	IC-CJW-F-005: Potential out-of-bound read
	IC-CJW-F-007: Lack of parameter validation in signing and verify functions

	Observations
	IC-CRY-O-001: Zeroization of memory holding sensitive data
	IC-CAR-O-002: Potentially unsafe unwrap() calls
	IC-CAR-O-003: Wallet seed derivation method does not check mnemonic length
	IC-CAR-O-004: Lack of unit tests of BIP44 logic
	IC-CAR-O-005: Clippy warnings
	IC-CAR-O-006: No explicit handling of failed decryption
	IC-CAR-O-007: Potential risk of integer overflow
	IC-WFE-O-008: No certificate/key pinning
	IC-WFE-O-009: Dependencies
	IC-WBE-O-010: API input validation
	IC-CJW-O-011: Paper wallet incorrect documentation

	About

